1.3 Global market scenario

As more and more governments across the world are aggressively looking for ways to benefit from the ongoing EV revolution, the market opportunity in the space has grown dramatically over the years. Thanks to the push from local governments and corporates, the sector is expected to grow at a CAGR of 28.3% between 2017 and 2026, as per BIS Research.
For the first time in 2015, the global electric vehicle fleet surpassed 1 Mn, which was later doubled in 2016.
Here are some stats that highlight the sector’s rising potential:
New registrations of electric cars hit an all-time high in 2016, with over 750K sales worldwide, according to the International Energy Agency (IEA).
With a 29% market share, Norway currently boasts the most successful deployment of electric vehicles globally, followed by the Netherlands at 6.4% and Sweden with 3.4% market share. Recently, the Scandinavian nation of Norway set a new world record, with electric and hybrid vehicles accounting for nearly 52% of its total car sales in 2017 against 40% in 2016.
Coming closely behind are China, France and the United Kingdom, all of whom have electric car market shares close to 1.5% respectively.
In 2016, China accounted for nearly 40% of the world’s total electric car sales. In fact, Chinese OEMs produced 43% of the 873K EVs built worldwide in 2016. With more than 200 Mn electric two-wheelers, 3.3 to 4 Mn low-speed electric vehicles (LSEVs) and over 300K electric buses (as of 2017), China is currently the global leader in the electric mobility race.
In the second position, in terms of the number of EV sales, is the US.
For the first time in 2015, the global electric vehicle fleet surpassed 1 Mn, which was later doubled in 2016.
In line with this growth, the market is expected to have more than 10.8 Mn units by 2026, as per a survey by BIS Research. Across the globe, some of the key players are Tesla Inc. (U.S.), BYD Company Limited (China), Volkswagen AG (Germany), Nissan Motor Corporation (Japan), and Mitsubishi Motors Corporation (Japan) among others.
Notable EV components manufacturers include Samsung SDI (South Korea), Automotive Energy Supply Corporation (Japan), LG Chem. (South Korea), Panasonic Corporation (Japan), and Continental AG (Germany), etc

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now

1.4 The Necessity Of Robust Support Infrastructure

Just like conventional vehicles rely on petrol pumps or gas stations for refuelling, the mass adoption of electric vehicles mandates a robust charging infrastructure. Also called electric vehicle supply equipment (EVSE), the EV charging stations are often installed by utility companies as on-street facilities. Others are situated at shopping centres, public destinations and even workplaces and can be operated by private companies.
EVSEs are currently classified as per the rate at which the batteries get charged. In fact, the charging times of plug-in electric vehicles are dependent on a number of factors: the level of depletion, its energy storage capacity as well as the type of EVSE. The charging process can take anywhere between 30 minutes (fast charging) up to 24 hours, depending on the specifications of the battery and the charger.
Currently, there are two main types of plug-in EV charging stations: AC and DC. An AC charging station supplies current to the on-board vehicle charger and typically offers 8 to 24 km range per 30 minutes of charging. A DC charging station supplies current directly to the car’s battery and can provide up to 129 km of electric range for every 30 minutes charge.
Fast charging (more than 40 kW), on the other hand, delivers over 100 km of a range within 10 to 30 minutes. Currently, it takes a little over an hour to fully charge a Tesla car at one of the firm’s supercharging stations. By switching out the battery pack, however, drivers could find themselves back on the road much sooner. This is essentially how the battery swapping system works.
The global EV charging infrastructure market is expected to skyrocket to $45.59 Bn by 2025.
Last year, for instance, Tesla filed a patent for a new battery swapping robot that can lift a vehicle and change its battery pack for a new one in just 15 minutes. This was in line with the company’s vision to make almost nonstop travel during long road trips possible with electric cars.
With the growing popularity of electric vehicles, the global EV charging infrastructure market is expected to skyrocket to $45.59 Bn by 2025, as per a report by Grand View Research. Within this sector, the fast charging segment is poised to witness the fastest growth, with an estimated CAGR of around 47.9% from 2017 to 2025, the report by Grand View Research predicts.
As of December 2017, there were an estimated 20,178 EV public and private charging sites in the US, of which around 86.9% were available to the public. Japan, on the other hand, has more than 2,800 DC fast charging stations.
According to a study by IHS Inc., the number of EV charging units will increase exponentially from 1 Mn units in 2014 to more than 12.7 Mn units in 2020. Additionally, approximately 10% of EV charging stations globally will be in the public or semi-public domain by 2020.