1.0 solar/Yeon Soo Jung, Dea Han Jeong, Sung Bum Kang, Fredrick Kim, Myeong Hoon Jeong, Ki-Suk Lee, Jae Sung Son, Jeong Min Baik, Jin-Sang Kim, Kyoung Jin Choi. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy, 2017; DOI: 10.1016/j.nanoen.2017.08.061
2.0 Fgure 1/ http://www.onalytica.com/wp-content/uploads/2015/02/old%20media/pie_brands_SoV_1200x1200.jpg
3.0 fig 2/ in shoe review for all in my doc ref 15
4.0 L.M. Goncalves,J.G. Rocha, P.F. Rocha, M.P. Silva, and S. LancerosMendez,”Energy Harvesting From Pzelectric Materials Fully Integrated in Footwear, IEEE Transactions on Industrial Electronics, vol 57, no. 3, pp. 813-819, March 2010.
5.0 N.S. Shenck and J.A. Paradiso, “Energy Scavenging with ShoeMounted Piezo-Electrics”, IEEE Micro, vol. 21, no. 3, pp. 3041, 2001.
6.0J. Hayashida, “UnobtrusiveIntegration of Magnetic Generator Systems into Common Footwear”, BS thesis, Dept. of Electrical Engineering and MIT Media Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., 2000.
7.0C.J. Kendall, “Parasitic Power Collection in Shoe-Mounted Devices, BS thesis, Dept. of Physics and MIT Media Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., June 1998.
8.0 Luchetti, G., Servici, G., Frontoni, E., Mancini, A., Zingaretti, P. “Design and test of a precise mobile GPS tracker “, 21st Mediterranean Conference on Control and Automation, MED 2013 – Conference Proceedings, 2013.
9.0 L. Mateu and F. Moll, Appropriate charge control of the storage capacitor in a piezoelectric energy harvesting device for discontinuous load operation. Sensors and Actuators A 132, 302–310 (2006).
10.. N. S. Shenck and J. A. Paradiso, Energy Scavenging with Shoe-mounted Piezoelectrics. IEEE Microelectronics 21, 30–42 (2001).
11. E. Frontoni, A. Mancini, P. Zingaretti and A. Gatto, Energy Harvesting or Smart Shoes: A Real Life Application. In: Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, Oregon, USA, August 4–7 (2013)
12. S. J. Hwang, H. J. Jung, J. H. Kim, J. H. Ahn, D. Song, T. H. Sung, Y. Song, H. L. Lee, S. P. Moon and H. Park, Designing and Manufacturing a Piezoelectric Tile for Harvesting Energy from Footsteps. Current Applied Physics 15, 669–674 (2015).
13 A. Almusallam, R. N. Torah, D. Zhu, M. J. Tudor and S. P. Beeby, Screen-printed piezoelectric shoe-insole energy harvester using an improved ?exible PZT-polymer composites. Journal of Physics: Conference Series 476, 012108 (2013).
14.0 T. S. Gross and R. P. Bunch, Measurement of discrete vertical in-shoe stress with piezoelectric transducers. Journal of Biomedical Engineering 10, (1988).
15. M. A. Razian and M. G. Pepper, Design, Development, and Characteristics of an In-Shoe Triaxial Pressure Measurement Transducer Utilizing a Single Element of Piezoelectric Copolymer Film. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 288–293 (2003).
16. . Zh. G. Geng, M. G. Pepper and Y. Yan, Design and Characterisation of a Single Element Tri-axial Piezoelectric Transducer for In-shoe Force Measurement. Instrumentation and Measurement Technology Conference (I2MTC) IEEE 2010, 1048–1052 (2010).
17 A. J. Nevill, M. G. Pepper and M. Whiting, In-shoe foot pressure measurement system utilizing piezoelectric ?lm transducers. Medical & Biological Engineering & Computing 33, 76–81 (1995).
18. H. S. Kim, J. H. Kim and J. Kim, A Review of Piezoelectric Energy Harvesting Based on Vibration. International Journal of Precision Engineering and Manufacturing 12, 1129–1141 (2011).
19. J. J. Zhao and Zh. You, A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors. Sensors 14, 12497–12510 (2014).
20. H. P. Hu, Ch. Zhao, Sh. Y. Feng, Y. T. Hu, and Ch. Y. Chen, Adjusting the Resonant Frequency of a PVDF Bimorph Power Harvester through a Corrugation-Shaped Harvesting Structure. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 55, 668–674 (2008).
21. D. Fourie, Shoe-Mounted PVDF Piezoelectric Transducer for Energy Harvesting. Journal of Intelligent Material Systems and Structures 19, 66–70 (2010).
22. H. W.Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. E. Newnham and H. F. Hofmann, Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment. Japanese Journal of Applied Physics 43, 6178–6183 (2004).
23. X. T. Li, M. S. Guo, and Sh. X. Dong, A Flex-Compressive-Mode PiezoelectricTransducer for Mechanical Vibration/Strain Energy Harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 58, 698–703 (2011).
24. J. Palosaari, M. Leinonen, J. Hannu, J. Juuti, H. Jantunen, Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression. Journal of Electroceramics 28, 214–219 (2012).
25. A. Daniels, M. Zhu and A. Tiwari, Design, analysis and testing of a piezoelectric ?ex transducer for harvesting bio-kinetic energy. Journal of Physics: Conference Series 476, 012047 (2013).
26. B. Yang and K. S. Yun, Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement. Sensors and Actuators A 188, 427–433 (2012
27. W. S. Jung, M. J. Lee, M. G. Kang, H. G. Moon, S. J. Yoon, S. H. Baek and Ch. Y. Kang, Powerful curved piezoelectric generator for wearable applications. Nano Energy 13, 174–181 (2015).
28. K. Ishida, T. Ch. Huang, K. Honda, Y. Shinozuka, H. Fuketa, T. Yokota, U. Zschieschang, H. Klauk, G. Tortissier, T. Sekitani, H. Toshiyoshi, M. Takamiya, T. Someya, and T. Sakurai, Insole Pedometer with Piezoelectric Energy Harvester and 2 V Organic Circuits. IEEE Journal of Solidstate Circuits 48, 255–264 (2013).
29.Frontoni, E., Mancini, A., Zingaretti, P., Gatto, A. , “Energy harvesting for smart shoes: A real life application”, Proceedings of the ASME Design Engineering Technical Conference, 2013.
30.