CHAPTER IV
RESULTS AND DISCUSSIONS
This chapter presents, discusses and analyze the data gathered among DSME science majors of College of Education, Mindanao State University-Iligan Institute of Technology (CED, MSU-IIT). The flow of the presentation, discussion and analysis of data follows the pattern of the study’s statement of the problem.

Table 3 shows the level of each critical thinking skill in terms of year level of the respondents. Based on the data, each year level of the respondents had different level in each critical thinking skills (Appendix C).
Table 3. Summary of the Different Levels of Critical Thinking Skills among the Year Level DSME Science Major-Respondents Enrolled in EDSC 137
Year Level Level of Each Critical Thinking Skills
Application Skill Analysis Skill Synthesis Skill Evaluation Skill
Level % Level % Level % Level %
2nd Year Median 68.6 Upper Median 80.0 Median 68.6 Median 80.0
3rd Year Upper Median 49.1 Upper Median 68.4 Median 52.7 Median 75.4
4th Year Upper Median 56.4 Upper Median 92.3 Upper Median 59.0 Upper Median 66.7
Noticeably, the second year respondents are found to be in median level in the three skills 68.6% (application); 68.6% (synthesis); and 80% (evaluation) except for the analysis skill (80%) which is upper median. For the third year respondents, they got 49.1% (application) and 68.4% (analysis) which are upper median level while 52.7% (synthesis) and 75.4% (evaluation) as median level. Meanwhile, the fourth year respondents are found to be in upper median level in all the skills, namely; application (56.4%); analysis (92.3%); synthesis (59%); and evaluation (66.7%). In general, categorizing the levels obtained according to the different critical thinking skills, the fourth year respondents excel in all critical thinking skills, thus, indicating on higher level of critical thinking.
As cited in Crowl and others (1997), Vygotsky seems to have consolidated major concepts of cognitive development. Cognitive development progresses as children learn; biological maturity accounts for “elementary processes” such as reflexive responses. When learning a specific skill, students also perceive the underlying principles. Social interaction and social culture play major roles in learning and cognitive development; children internalize knowledge most efficiently when others, such as teachers, parents, or peers, guide and assist them; significant people in an individual’s life contribute to the development of “higher mental functions”; people’s cognitive processes function differently when working on their own versus working in groups. Everyone has a “zone of proximal development,” and asking certain questions or giving suggestions will move the individual toward potentially higher levels; such support helps students in solving problems until they can solve them independently and may include hints, questions, behavior modeling, rewards, feedback, information giving, self-talk, or peer tutoring (pp. 69–71).
Supported with the same results, the study of Nan Bahr (2010) claimed that considering with the year level, higher year level was generally confident in their ability to think critically and to clearly identify activities in their coursework that demanded critical thinking.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now

Ramasamy (2011), on the other hand, considered the age, discipline, program, grade point average, and number of reading hours of the participants. In fact, in her study, result had shown that age is an essential part of developing critical thinking because it is related with maturity and only maturity helps making critical and complex judgments. As we go to higher year level in our education, we also became matured enough to think critically which implies that the higher year level, the higher the level of our critical thinking skills.

Figure 3 shows the level of application skill by course of the respondents. Moreover, it presents the percentage obtained in upper median level.

Figure 3. Level of Application Skill by Course
As revealed in Figure 3, the BSEd Biology got 75% as the highest percentage compared to the BEEd Science and Health with 30.6%; BSEd Physics with 33.3%; BSEd General Science with 43.3%, and BSEd Chemistry with 47.4%, respectively.

The BSEd Biology respondents got the highest percentage among all the courses. This suggests that most of their subjects required field trips in dealing with environments where they learn to apply the scientific methods in setting up experiments and in using scientific equipment. Secondary courses such as BSEd Biology requires higher critical thinking skills compared with the BEEd Science and Health which focuses on the basic science concepts.
According to the study of Patrick (2010), there was a significant difference in test scores between the students that had participated in field trip experiences and those who were not included on field trips. It was concluded in the study that these field trip experiences significantly improved students’ understanding of science and their motivation / attitude towards the subject. Since they were exposed to field study in their field trips, they had given the chance and opportunity to apply what they have learned inside the classroom.
Moreover, in Bloom’s three taxonomies lower levels provide a base for higher levels of learning (Bloom, 1956; Kauchak and Eggen, 1998). Comprehension and application form linkages to higher order skills; here, the learner uses meaningful information such as abstractions, formulas, equations, or algorithms in new applications in new situations. Higher order skills include analysis, synthesis, and evaluation and require mastery of previous levels, such as applying routine rules to familiar or novel problems (McDavitt, 1993). execution of a dance performance or song designed to convey a particular message.
Figure 4 shows the level of analysis skill by course. Moreover, it presents the percentage obtained by the respondents in upper median level.

Figure 4. Level of Analysis Skill by Course
In general, BSEd Chemistry respondents got 94.7% as the highest percentage which was followed by BSEd Biology with 92.9%; BSEd General Science with 86.7%; BEEd Science and Health with 66.7%, and BSEd physics with 50% which got the lowest percentage. Furthermore, it reveals that BSEd Chemistry and BSEd Biology were closely of the same percentage.

This implies that the BSEd Chemistry respondents got (94.7%) as the highest percentage in analysis skill because their chemistry majors require critical analysis in understanding and synthesizing chemical information. In addition, the chemistry majors become adept with laboratory works and data analyses, and apply the principles of chemistry in solving qualitative and quantitative problems. On the contrary, despite the BSED Chemistry and BSEd Physics perform laboratory activities in their subject area, they still differ in their level of critical thinking skills. Result shows that BSEd Physics got 50% as the lowest percentage, it does not mean that they lack the analysis skill but maybe because they did not do well in answering the questions.
Figure 5 presents the level of synthesis skill by course. Moreover, it presents the percentage obtained by the respondents in upper median level

Figure 5. Level of Synthesis Skill by Course
As reflected in Figure 5, the BSEd Biology respondents got 64.3% as the highest synthesis skill which was followed by BSEd Physics with 55.6%; BSEd General Science with 46.7%; BSEd Chemistry with 42.1%; and BEED- Science and Health with 30.6% as the lowest percentage.

It is interesting to note that the BSEd Biology respondents still got the highest percentage same with the results in the application skill. In addition, BSEd Biology subjects contain more laboratory class and hands-on activities compared to BEEd Science and Health subjects which deals more on lectures and discussions. Wheatley (1975) reported on a research study in college biology that the students who were provided with special laboratory activities showed an increase in student’s performance. It implies that students who were exposed to the diversity and various interactions demonstrate greater propensity toward critical thinking.

In addition, the researchers found out that majority of BEEd Science and Health enrolled EDSC-135 during first semester Academic Year 2016-2017 and the gathering of data was conducted last November 2017. They have poor performance maybe because they forgot the lessons related to the test questions.
Figure 6 shows the level of evaluation skill by course. Additionally, it presents the percentage obtained by the respondents in upper median level.

Figure 6. Level of Evaluation Skill by Course
As shown in the figure, it reveals that all courses really needs improvement in evaluation skill because all courses were below 50% based on the results of the gathered data. The BSEd Physics got 44.4% as the highest percentage which is followed by BSEd Chemistry with 26.3%; BSEd Biology with 21.4%; BEEd Science and Health with 16.7%; and BSEd General Science with 6.7% as the lowest among the courses.

Based on the profile of the respondents (Appendix D), most of the BSEd General Science respondents were in second year level compared to other courses while most of the BSEd Physics respondents were third and fourth year levels. Learning is a lifelong process and has stages appropriate to the level depending on how that stage affects the development of learning. This implies that as we go to higher year level in our education, we also became matured enough to think critically.
Figure 7 reflects the cross tabulation between level of critical thinking and courses of the respondents. Additionally, it presents the average result in all critical thinking skills.

N=131 Chi-square = 15.069 df = 4 p-value = 0.005 (Significant)
Note: if p value is less than 0.05 then there is a significant relationship, otherwise not significant
Figure 7. Significant Relationship Between the Course of the Respondents and Their
Level of Critical Thinking Skill
Generally, majority of the respondents got median level with 62.6% while 37.4% got upper median level. Moreover, it shows that BSEd Biology students got highest percentage in upper median level followed by BSEd Chemistry, General Science, BEEd Science and Health and lastly the BSEd Physics who got the lowest percentage.
The results in both Figures 3 and 5 show that BSEd Biology got the highest level in application and synthesis skill. In addition, based on their program prospectus they were more exposed to science laboratory compared to other courses, thus it is expected that they would obtain higher critical thinking skills.
To find out if there is a relationship between the course of the respondents and the level of critical thinking skill a Chi-square test was done on these variables of 0.005 is less than the 0.05 level of significance which leads to the rejection of the hypothesis. Thus, there is a significant relationship between the course of the respondents and their level of critical thinking skills. This implies that the utilization of do-it-yourself (DIY) equipment and laboratory activities are effective tools to improve their critical thinking skills such as analysis skill. The result further strengthened the statement of Gray (2005) that “constructivist teaching fosters critical thinking and creates motivated and independent learners.”
In Table 4, a Friedman signed rank test was used in ranking each row together. It shows what critical thinking skill was highly developed by the respondents.

Table 4. Critical Thinking Skills Highly Developed by the Respondents
Critical Thinking Skills Sample (N) Mean Std. Deviation Rank
Application 131 6.19 1.36 3
Analysis 131 7.35 1.20 1
Synthesis 131 6.41 1.31 2
Evaluation 131 5.43 1.31 4
As depicted in Table 4, the DIY and laboratory activities have remarkably improved the respondent’s analysis skill and the evaluation was least achieved. Also in the same table, the analysis skill of the respondents was highly developed and their evaluation skill needed improvement. Based on the test questionnaire, the questions under evaluation skill were more complex compared to the other questions which may be the reason why evaluation skill got the lowest rank among the four (4) critical thinking skills.
Similar study was conducted by Alefante (2012) on what level of critical thinking among 44 high school students and come up with the same conclusion. In addition, the study of Pito and Sorongon (2004) also agrees that analytical skill was likely developed among high school students.

This result implies that the use of DIY equipment and laboratory activities have improved the critical thinking skill of the respondents. They reached analysis level which is the first level of critical thinking in the cognitive domain according to Bloom (1956).

CHAPTER V
SUMMARY OF FINDINGS, CONCLUSIONS AND RECOMMENDATIONS
This chapter presents the summary of findings, conclusions and recommendations based on the results of the data gathered and interpreted.
Summary of Findings
The analysed data revealed the level of critical thinking and each critical thinking skill by the course of the respondents.

The study revealed that the 4th year respondents excel in all critical thinking skills. This means that as we go to higher year level in our education, we also became matured enough to think critically which implies that the higher year level, the higher the level of our critical thinking skills.

BSEd Biology got the highest percentage among all the courses. Since they were exposed to field study in their field trips, they have given the chance and opportunity to apply what they have learned. This implies that field trip has a great help in developing the critical thinking skills.
BSEd Chemistry got the highest percentage in analysis skill compared to BSEd Physics. This implies that even though BSED Chemistry and BSEd Physics perform laboratory activities in their subject area, they still differ in the level of critical thinking skills.

BSEd Biology got the highest percentage in synthesis skill, same with the results in application skill. Moreover, BSEd Biology subjects contain more laboratory class and hands-on activities compared to BEEd Science and Health subjects deals more on lectures and discussions. It implies that students who were exposed to the divers interactions demonstrate greater propensity toward critical thinking.
BSEd Physics got the highest percentage in evaluation skill compared to BSEd General Science who got the lowest. Based on the profile of the respondents, most of the BSEd General Science respondents were 2nd year level while most of the BSEd Physics respondents were 3rd and 4th year. This implies that as we go to higher year level in our education, we also became matured enough to think critically.

BSEd Biology got the highest level in application and synthesis skill. In addition, based on their program prospectus they were more exposed to science laboratory compared to other courses, thus it is expected that they would obtain higher critical thinking skills.

Generally, the level of critical thinking among 131 respondents is in median level with 62.6% and only 37.4% got upper median.

Result also shows that analysis skill was highly developed by the respondents and evaluation skill needs improvement. This implies that the use of DIY equipment and laboratory activities have improved the critical thinking skill of the respondents.
Conclusions
Based on the findings, the following conclusion is made:
It was revealed that the p-value obtained was 0.005, less than the 0.05 level of significance which means that there is a significant relationship between the courses of the 131 DSME student-respondents across department-curricula and their levels of critical thinking skills. Thus, the hypothesis is rejected since there is no enough evidence to accept the null hypothesis since, learning as perceived is a life-long and continuous process which, in turn, that in order to develop high level of critical thinking, one should get acquainted with the academic and non-academic facets of learning.

Recommendations
Based on the results and analysis of this study, the following recommendation is advised:
Since DIY apparatus develops the student’s critical thinking, students may use DIY apparatus in science laboratory classroom.

There should be readily-available, developed and innovative science apparatus for every student so that he/she can freely discover it and can think critically.

Teachers should develop more DIY science apparatuses and instructional materials and activities based on the K+12 curriculum that the students can easily understand the concepts and theories.

Future researchers may come up with the best strategies that will fit to the DIY science instruments so that students would not have any hesitations in coping with the lessons.

Other possible related topics in science as well as with other DSME courses should be replicated to validate the results obtained in the study as well as to expound other possible areas of interest.